Improving data sets with regard to the biology and neurotrophic potential of enteroviruses other than polio

Raul Andino

Microbiology and Immunology

Picornaviridae: evolutionary tree

HEV-C closely related viruses

Implications for poliovirus eradication campaign

- PV evolved from a C-CAV ancestor
- Newly evolved CD155 specificity is favored over the ancestral ICAM specificity
- Homologous recombination or genetic drifting?

Global poliovirus eradication campaign assumes that PV has no natural reservoir but humans

A 'natural silent reservoir' may be present INSIDE human population: widespread, diverse and closely related C-CAVs

The "imperfect" replication

(Eigen, M. et al., 1993)

Quasispecies

- The virus population is a collection of interdependent mutants
- The structure of the quasispecies is determine by:
 - 1) error rate of the RdRp
 - 2) recombination rate between different genomes
 - 3) selective pressures

Lessons from a high fidelity poliovirus mutant

Wildtype (2.0 mut/gen)

- Pathogenic
- Transmissible

G64S (0.3 mut/gen)

- Non-pathogenic
- Not shedding

(Kirkegaard, Cameron, Andino et al.)

Cooperativity between members of the quasispecies

Cooperativity between members of the quasispecies

(Vignuzzi et al. Nature, 2006)

Mutual aid: A factor of evolution

Peter Kropotkin

Survival of the Fittest
Individual or Population?

"cooperation and mutual aid are as important to evolution as competition and mutual strife"

Specialized subpopulations

Reduced diversity = reduced functionality

Cooperative interactions

Conclusions

- The evolvability of a given virus population depends on the structure of the quasispecies
- Error rates and recombination shape up the population genetic structure
- Positive and negative interaction among members of the population determines the ability of the virus population to successfully navigate the environment

a) New methods to explore the quasispecies structure

- Consensus sequences contains little information
- Error rates, in vivo
- Error frequency (what is the degree of definition required?)
- Sequence space of the population (spatial representation vs time-scale representation)
- Dynamic nature of the quasispecies (traditional sequencing approaches inadequate)
- Particle/PFU ratios: coinfection rates

b) Defining the effect of the interactions between viruses

- Positive and negative effects on pathogenesis and transmissibility
- Exploring interactions between different
 viruses/pathogens, including other enteroviruses
- What are the mechanisms underlying these interaction?
 - -recombination vs complementation
 - -cellular vs systemic complementation
 - -defining the functions of different subpopulation

c) Small animal models

- Define correlation between transmissibility and pathogenesis with the structure of the quasispecies
- Explore the dynamic nature of the evolution of the virus in complex environments (in vivo)
- Examining how human interventions (vaccines and drugs)
 may alter the pathways of evolution

Acknowledgements

UCSF - Andino Lab

Marco Vignuzzi

Emily Wendt Cecily Burrill Penn State University - Cameron Lab

Craig Cameron

J.J. Arnold Victoria Korneeva

NIH-NIAID

LUMC Leiden

Sasha Gorbaleyna